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Șerban Țițeica (1908–1985) published four papers on quantum electrodynamics, in the 

early '40s of the 20th century, which will be discussed in the context of modern quantum 

theory of fields by Professor Alexandru-Sorin Mărculescu, in a study to appear in the 

Romanian Reports in Physics, vol. 73, no. 2 (2021). These four papers, written in French, 

were issued in journals with a very limited circulation. The goal of the present preprint is 
to provide an easily accessible, English version of these papers. 

 

Namely, we are speaking about: 

1. Contributions à la théorie des positrons [Contributions to the theory of positrons], 
submitted in September 1940, issued in Bull. Soc. Roum. Phys. vol. 41, no. 76 (1940) 

2.  Contributions à la théorie des positrons (Deuxième note) [Contributions to the 

theory of positrons (Second note)], issued in Bull. Soc. Roum. Phys. vol. 42, no. 77 (1941) 

3. Sur le temps propre en mecanique ondulatoire [On the proper time in wave 

mechanics], issued in Bull. Sect. Sci. de l'Acad. Roum., tome XXV-eme, no. 4 (1942) 

4. La polarisation du vide [The vacuum polarization], submitted on September 1942, 

issued in Bull. Soc. Roum. Phys. vol. 43, no. 80 (1942). 

 

These papers, worked out in dramatic years, shared a dramatic fate – they remained 

unnoticed, and their possible contribution to the development of quantum 

electrodynamics was lost. Hopefully, the remarkable effort of Prof. Mărculescu allows the 
access of the modern readers to the unique beauty of this work.  

 



Contributions to the theory of positrons (I)

Şerban Ţiţeica

Abstract

Dirac has shown that the density matrix, which describes the vac-

uum, is not uniquely determined by its singularities. This may be com-

pared with the result obtained by Hadamard for the calculation of the

fundamental solution of partial differential equations of the second order.

The density matrix can be completely determined by using Hadamard’s

method of descent.

The relativistic wave theory of electron, proposed in 1928 by Dirac, was
confronted from the very beginning with a seemingly unavoidable difficulty: the
existence, for electron, of negative energy levels. It is well known how Dirac

himself avoided this difficulty: he admits that an electron distribution with
all negative energy levels occupied according to the Pauli exclusion principle,
and all positive energy levels unoccupied, is unobservable and it corresponds to
what is usually called vacuum. Any modification of this state is observable, and
corresponds to the presence of particles. There are two possible modifications,
which can occur separately or simultaneously: either there are several positive
energy levels occupied by electrons which behave in the familiar way as parti-
cles with positive energy and negative charge, or there are several unoccupied
negative energy levels. It is easy to realize [1] that these ‘holes’ behave exactly
like particles with positive energy and charge opposite to the electron one.

The theory allows also to predict that, under the action of appropriate elec-
tromagnetic fields, an electron occupying a negative level will be able to pass
to a positive level, being – so to say – two-fold observable: as an electron on
the positive level and as a ‘hole’ on the previously occupied negative level.
We know that the experimental discovery of positron has brilliantly confirmed
Dirac’s ideas and allowed to identify the positrons with ‘holes’.

All previous considerations concern the situation when the electromagnetic
field is absent, or when it is weak enough to be treated as a small perturbation.
But if we try to generalize the elementary theory just described to arbitrary
fields, new difficulties occur. After all, in an arbitrary field the energy levels are
completely mixed, and it is impossible to say which ones correspond to positive
energies, and which to negative energies. The unobservable distribution of elec-
trons, corresponding to the vacuum, cannot be characterized as simply as in the
absence of the electromagnetic field. The essential ideas for the development
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of the theory in this direction are equally due to Dirac [2]. We shall summa-
rize them, as they are absolutely necessary for understanding the content of
the present paper. Admitting the correctness of Hartree approximation, Dirac

calculates the matrix density associated with an unobservable distribution in
the simple case when the field is absent, and finds that this density has charac-
teristic singularities on the light cone having its top at one of the two spacetime
points with respect to which it is calculated. He generalizes this result to an
arbitrary field and looks for a solution of the wave equation having singularities
of the same sort. He finds out, in this way, that all the singular terms are per-
fectly determined, but that the regular part of the matrix density must satisfy
a certain partial derivatives equation. As it is well known, such an equation has
infinitely many solutions and one cannot know a priori which is the appropriate
one. The choices made by Dirac [2] and Heisenberg [3] are not identical. It
seems that Heisenberg’s choice prevailed, but it still shows a certain degree of
arbitrariness.

The aforementioned results can be connected to those obtained by Hadamard

in his researche on the integration of hyperbolic second order partial derivative
equations [4]. In order to solve the Cauchy problem, Hadamard looks for a so-
lution of the equation, named by him elementary solution, and characterized
by certain singularities. He finds out that, when the number of independent
variables is odd, the elementary solution has only algebraic singularities on the
light cone, and moreover it is uniquely determined. When the number of inde-
pendent variables is even, the elementary solution also allows for a logarithmic
singularity, and contains an additional, regular term, which has to satisfy a cer-
tain partial derivative equation. So, there is a large degree of arbitrariness in
choosing this solution. To avoid this inconvenience, Hadamard uses the trick of
‘descent’ , which means to take advantage of the results obtained in the case of
an odd number of variables, where these results are fully determined, for solving
the problem in the case of a number of dimensions smaller by one, consequently
even. Actually, Hadamard is using this trick only for the solution of the Cauchy
problem, but it can be also applied to find out the elementary solution.

By taking into account the close relationship existing between the Dirac

equation and the wave equation with four independent variables, which is the
class of equations studied by Hadamard, the results of Dirac could have been
predicted. The singularities are of the same algebraic-logarithmic nature and
the degree of indetermination is the same. We therefore expect that the other
results of Hadamard can be generalized to the case of Dirac equation. Among
others, we would expect that, for an odd number of independent variables, the
matrix density corresponding to the vacuum will be completely determined by
its singularities, and that the method of descent will allow to eliminate the ar-
bitrariness occurring for an even number of variables. In particular, there is a
chance to obtain a theory of ‘holes’ without any arbitrariness, by developing
first the theory in a fictitious, five-dimensional world, and by subsequently ‘de-
scending’ to the real, four-dimensional spacetime. The goal of the next pages is
to show that these expectations are correct.
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1 First case: Absence of the electromagnetic

field

Let us consider the general case of a world S2ν with 2ν independent variables
denoted by t, x1, x2, . . . , x2ν−1; the set of spatial variables will be considered
as the components of the space vector, ~x. Similarly, the vector operator with
components

∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂x2ν−1

will be represented by the symbol ∇.
Simultaneously we consider the world S2ν+1 with 2ν + 1 dimensions that is

obtained by adding to S2ν a new space coordinate z.
The Hamiltonian function for a Dirac electron in S2ν takes therefore the

form

H0 = c~α~p+ βmc2 = c
~

i
~α∇+ βmc2 (1)

where ~p is the electron momentum, c the speed of light, ~α and β are matrices
satisfying the well known commutation relations [5] and ~ the Planck constant

divided by 2π. For applying the method of descent it is also necessary to consider
the operator

M0 = c (~α~p+ βq) = c
~

i

(

~α∇+ β
∂

∂z

)

. (2)

The Dirac equation for the electron is

H0ψ = 0 (3)

where H0 is the operator

H0 =
i

c

∂

∂t
− 1

~c
H0 = i

(

1

c

∂

∂t
+ ~α∇

)

− β
mc

~
. (4)

At the same time we consider the equation

M0κ = 0 (5)

with

M0 =
i

c

∂

∂t
− 1

~c
M0 = i

(

1

c

∂

∂t
+ ~α∇+ β

∂

∂z

)

. (6)

The equations (3) and (4) give

ψ (t, ~x) = e
− i

~
H0t

ψ (0, ~x) (7)

and

κ (t, ~x, z) = e
− i

~
M0t

κ (0, ~x, z) , (8)
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respectively.
Let us take for ψ (0, ~x) and κ (t, ~x, z) the plane waves

ψ
(

0, ~x;~k
)

=
1

(2π)
ν− 1

2

ei
~k~x;

κ

(

0, ~x, z;~k, l
)

=
1

(2π)
ν e
i
(

~k~x+ lz
)

normalized such that
∫

ψ∗
(

0, ~x; ~k′
)

ψ
(

0, ~x; ~k′′
)

d~x = δ
(

~k′ − ~k′′
)

∫

κ
∗
(

0, ~x, z; ~k′, l′
)

κ

(

0, ~x, z; ~k′′, l′′
)

d~xdz = δ
(

~k′ − ~k′′
)

δ (l′ − l′′) .

In this case, the wave functions ψ
(

0, ~x;~k
)

and κ

(

0, ~x, z;~k, l
)

will be further

given by the expressions (7) and (8) if one agrees to replace the operations ∇
and

∂

∂z
by i~k and il, respectively, that is

ψ
(

t, ~x;~k
)

= e
−ic

(

~α~k + β
mc

~

)

t 1

(2π)
ν− 1

2

ei
~k~x,

κ

(

t, ~x, z;~k, l
)

= e
−ic

(

~α~k + βl
)

t 1

(2π)
ν e
i
(

~k~x+ lz
)

.

Let us observe now that

(

~α~k + β
mc

~

)2

= k2 +
(mc

~

)2

(9)

and
(

~α~k + βl
)2

= k2 + l2. (10)

By expanding in power series the exponential having operators as exponent
one immediately obtains

e
−ict

(

~α~k + β
mc

~

)

= cos
(

ct
√

k2 + µ2
)

− i sin
(

ct
√

k2 + µ2
) ~α~k + βµ
√

k2 + µ2

=
1

2

(

1− ~α~k + βµ
√

k2 + µ2

)

eict
√

k2 + µ2
+

1

2

(

1 +
~α~k + βµ
√

k2 + µ2

)

e−ict
√

k2 + µ2

where µ =
mc

~
is the Compton wave number. The other exponential is similarly

expanded, and the result can be obtained replacing µ by the variable l.
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If one agrees to always take the positive value of the square root one finds
that the wave function splits into two parts, a part associated with positive
energies and another one with negative energies. These two parts are labelled
by the lower subscripts + and − as indicated below:

ψ+

(

t, ~x;~k
)

=
1

2 (2π)
ν− 1

2

(

1 +
~α~k + βµ
√

k2 + µ2

)

e
i
(

~k~x− ct
√

k2 + µ2
)

ψ−

(

t, ~x;~k
)

=
1

2 (2π)
ν− 1

2

(

1− ~α~k + βµ
√

k2 + µ2

)

e
i
(

~k~x+ ct
√

k2 + µ2
)

κ±

(

t, ~x, z;~k, l
)

=
1

2 (2π)
ν

(

1± ~α~k + βl√
k2 + l2

)

e
i
(

~k~x+ lz ∓ ct
√

k2 + l2
)

.

From these expressions and the equations (9) and (10) one can immediately
obtain the Dirac matrix densities for the two worlds with 2ν and 2ν +1 dimen-
sions

Σ−
2ν =

∫

ψ−

(

t′, ~x′;~k
)

ψ∗
−

(

t′′, ~x′′;~k
)

d~k =

=
1

2

1

(2π)
2ν−1

∫

(

1− ~α~k + βµ
√

k2 + µ2

)

e
i
(

~k~x+ ct
√

k2 + µ2
)

d~k

Σ+
2ν =

∫

ψ+

(

t′, ~x′;~k
)

ψ∗
+

(

t′′, ~x′′;~k
)

d~k =

=
1

2

1

(2π)
2ν−1

∫

(

1 +
~α~k + βµ
√

k2 + µ2

)

e
i
(

~k~x− ct
√

k2 + µ2
)

d~k

Σ∓
2ν+1 =

∫

κ∓

(

t′, ~x′, z′;~k, l
)

κ
∗
∓

(

t′′, ~x′′, z′′;~k, l
)

d~kdl =

=
1

2

1

(2π)
2ν

∫

(

1∓ ~α~k + βl√
k2 + l2

)

e
i
(

~k~x+ lz ± ct
√

k2 + l2
)

d~kdl.

In these expressions it has been put ~x′ − ~x′′ = ~x, z′ − z′′ = z, and t′ − t′′ = t.
By a simple transformation these integrals can be brought to the following

form:

Σ∓
2ν = ±G0

1

2

1

(2π)
2ν−1

∫

e
i
(

~k~x± ct
√

k2 + µ2
)

√

k2 + µ2
d~k

Σ∓
2ν+1 = ±N0

1

2

1

(2π)
2ν

∫

e
i
(

~k~x+ lz ± ct
√

k2 + l2
)

√
k2 + l2

d~kdl
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where G0 and N0 denote the operators

G0 =
1

i

(

1

c

∂

∂t
− ~α∇

)

− βµ

and

N0 =
1

i

(

1

c

∂

∂t
− ~α∇− β

∂

∂z

)

,

respectively.
The densities of interest in positron theory read:

Σ−
2ν − Σ+

2ν = G0
1

(2π)
2ν−1

∫

ei
~k~x

cos
(

ct
√

k2 + µ2
)

√

k2 + µ2
d~k (11)

and

Σ−
2ν+1 − Σ+

2ν+1 = N0
1

(2π)
2ν

∫

e
i
(

~k~x+ lz
)

cos
(

ct
√
k2 + l2

)

√
k2 + l2

d~kdl. (12)

One can immediately find the relation between the two densities, thereby
providing a ‘descent’ recipe in absence of the electromagnetic field: one can
pass from the density in 2ν + 1 dimensions to the density in 2ν dimensions by

replacing in N0 the operator
1

i

∂

∂z
with µ, multiplying then the quantity under

N0 by e−iµz and integrating over z from −∞ to +∞. Indeed, this integration

removes the factor eilz and replaces it by 2πδ (l − µ). The factor 2π lowers with
one unit the value of its exponent in the denominator, and the integration with
respect to l replaces everywhere l with µ.

Let us work out this calculation, which will provide us useful insights into
the case when a certain field is present. For this purpose we introduce in the
spaces ~x, z and ~k, l the polar coordinates with radii

R =
√

x21 + x22 + · · ·+ x22ν−1 + z2 =
√

r2 + z2

and

K =
√

k21 + k22 + · · ·+ k22ν−1 + l2 =
√

k2 + l2.

One gets this way

I ′ =
1

(2π)
2ν

∫

e
i
(

~k~x+ lz
)

cos
(

ct
√
k2 + l2

)

√
k2 + l2

d~kdl =

=
1

(2π)
2ν

∫

eiKR cos θ cos (ctK)K2ν−2dKdΩ
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where θ is the angle between the vectors ~k, l and ~x, z, and dΩ is the infinitesimal
solid angle in 2ν dimensions. Integration with respect to Ω gives

1

(2π)
2ν

∫

eiKR cos θdΩ =
1

(2π)
ν

Jν−1 (KR)

(KR)
ν−1

where Jν−1 denotes the Bessel function of order ν − 1. The result is

I ′ =
1

(2π)
ν

∫

Jν−1 (KR)

(KR)
ν−1 cos (ctK)K2ν−1dK.

By taking into account the recurrence relation for Bessel functions

Jν−1 (KR)

(KR)
ν−1 = − 1

K2

1

R

∂

∂R

[

Jν−2 (KR)

(KR)
ν−2

]

= · · ·

=
1

K2(ν−1)

(

− 1

R

∂

∂R

)ν−1

J0 (KR) ,

the integral becomes

I ′ =
1

(2π)
ν

(

− 1

R

∂

∂R

)ν−1 ∫ ∞

0

J0 (KR) cos (ctK) dK.

But one has

∫ ∞

0

J0 (KR) cos (ctK) dK =







1√
R2 − c2t2

if R2 − c2t2 > 0

0 if R2 − c2t2 < 0
,

hence

I ′ =
1

(2π)
ν

(

− 1

R

∂

∂R

)ν−1






1√
R2 − c2t2

0







=
1

(2π)
ν

(

−1

r

∂

∂r

)ν−1






1√
z2 + r2 − c2t2

0







(13)

with r =
√

x21 + x22 + . . .+ x22ν−1.

Let us now work out the descent

I =
1

(2π)
2ν−1

∫

ei
~k~x

cos
(

ct
√

k2 + µ2
)

√

k2 + µ2
d~k

=
1

(2π)
ν

(

−1

r

∂

∂r

)ν−1 ∫ +∞

−∞

e−iµzdz
√

z2 − (c2t2 − r2)
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for r2 − c2t2 > 0, and

I =
1

(2π)
ν

(

−1

r

∂

∂r

)ν−1




∫ −
√

c2t2 − r2

−∞

e−iµzdz√
z2 + r2 − c2t2

+

∫ +∞

+
√

c2t2 − r2

e−iµzdz√
z2 + r2 − c2t2

]

(14)

for c2t2 − r2 > 0.
The theory of cylindric functions then gives

I =
1

(2π)
ν

(

−1

r

∂

∂r

)ν−1
{

πiH
(1)
0

(

iµ
√
r2 − c2t2

)

if r2 − c2t2 > 0

−πN0

(

µ
√
c2t2 − r2

)

if c2t2 − r2 > 0
(15)

where H
(1)
0 and N0 are the well known Hankel and Neumann functions. This

result is up to notations identical to that obtained by Dirac [2] for the case
ν = 2. If one had reversed the order of derivation and integration operations in
(14) one would have been confronted with divergent integrals. One can however
follow this approach and get the same result by taking the ‘finite part’ (see
Hadamard[4]) of divergent integrals or, equivalently, by conveniently deforming
the integration path in the complex plane of the variable z. We restrict ourselves
to these short remarks as we shall come back to this method when we shall work
out the descent in the presence of an arbitrary field.

2 Second case: the presence of an electromag-

netic field

In the world S2ν the field is defined by a scalar potential U and a vector potential
~A = A1, A2, ..., A2ν−1. These potentials depend on the variables t and ~x. In
going to the universe S2ν+1, we assume that the additional component Az is
identically zero and that the other potentials do not depend on z.

The Hamiltonian function for a Dirac electron in S2ν is

H = c~α~p+ βmc2 − e
(

U − ~α ~A
)

and the wave equation becomes

Hψ = 0 (16)

with

H = i

(

1

c

∂

∂t
− ~α∇

)

− βµ+
e

~c

(

U − ~α ~A
)

. (17)

We shall also consider the following operators:
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G =
1

i

(

1

c

∂

∂t
− ~α∇

)

− βµ− e

~c

(

U + ~α ~A
)

, (18)

M =
1

i

(

1

c

∂

∂t
+ ~α∇+ β

∂

∂z

)

+
e

~c

(

U − ~α ~A
)

, (19)

N =
1

i

(

1

c

∂

∂t
− ~α∇− β

∂

∂z

)

− e

~c

(

U + ~α ~A
)

. (20)

One requires a solution of equation (16) having the same singularities as the

expression (11) of the previous paragraph, that is for a function ψ
(

t′, ~x′; t′′, ~x′′
)

of the variables t′, ~x′ and of the parameters t′′, ~x′′ satisfying the equation (16)

with respect to the variables t′, ~x′, and having the same singularities as (11)on

the light cone with the top at t′′, ~x′′.
The method of descent consists of looking first for a solution κ of the equation

Mκ = 0 (21)

which is a function of the variables t′, ~x′, z′ and of the parameters t′′, ~x′′, z′′,
and has on the light cone with the top at t′′, ~x′′, z′′ the same singularities as
(11).

The calculations of the previous paragraph prompt us to set

κ = Nω (22)

where the operator N acts on the variables t′, ~x′, z′. We also have

MNω = 0. (23)

The function ω must have the same singularities as the expression (13)

I ′ =
1

(2π)
ν

(

− 1

R

∂

∂R

)ν−1
1√

R2 − c2t2
.

We therefore introduce

ω =
f
(

t′, ~x′, z′; t′′, ~x′′, z′′
)

(R2 − c2t2)
ν− 1

2

(24)

with f a regular function on the light cone. Again, as in the previous paragraph

we have put ~x = ~x′ − ~x′′, z = z′ − z′′, t− t′ − t′′, R =
√

x21 + · · ·+ x22ν−1 + z2.

Before substituting the expression (24) into equation (23), let us remark that
by a calculation almost similar to that usually done for obtaining the second
order Dirac equation, one finds

MN =
1

c2
∂2

∂t2
−∇2 − ∂2

∂z2
− 2

ie

~c

(

U
1

c

∂

∂t
+ ~A∇

)

+ · · · ,

9



with ∇2 =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x22ν−1

, and where the dots indicate terms with-

out derivatives acting on the function f . An easy calculation leads to

MN f

(R2 − c2t2)
ν− 1

2

=
1

(R2 − c2t2)
ν+ 1

2

{(

R2 − c2t2
)

MN f

+2 (2ν − 1)

[

t
∂

∂t′
+ ~x∇′ + z

∂

∂z′
− ie

~c

(

Uct− ~A~x
)

]

f

}

= 0. (25)

(The arguments of the functions U and ~A are t′ and ~x′). We see that our
calculation is somehow complementary to the calculation done by Hadamard.
The difference is that Hadamard is looking for the values taken by the singu-
lar solution inside the light cone, which has the effect of introducing the root√
c2t2 −R2, while in our problem the calculation worked out in the first section

compels us to consider the singular solution only outside the light cone. His
approache is however immediately applicable to our problem, and we shall use
it in order to find the solution f of the equation (25). For this purpose let us
set

f = f0 +
(

R2 − c2t2
)

f1 +
(

R2 − c2t2
)2
f2 + · · ·+

(

R2 − c2t2
)p
fp + . . . . (26)

Introducing this expression in equation (25) and equating to zero the coefficients
of the powers of R2 − c2t2 one obtains at first the equation for f0

(

t
∂

∂t′
+ ~x∇′ + z

∂

∂z′

)

f0 =
ie

~c

(

Uct− ~A~x
)

f0.

One integrates this equation by setting

t′ = t′′ + τs, ~x′ = ~x′′ + ~ξs, z′ = z′′ + ζs

with s a parameter and τ, ~ξ, ζ constants. Since

t
∂

∂t′
+ ~x∇′ + z

∂

∂z′
= s

d

ds

holds, one finds for f0
df0
ds

=
ie

~c

(

Ucτ − ~A~ξ
)

f0.

This equation can be immediately integrated and gives

f0 = C exp

[

ie

~c

∫ s

0

(

Ucτ − ~A~ξ
)

ds̄

]

= C exp

[

ie

~c

∫ t′, ~x′

t′′, ~x′′

(

Ucdt− ~Ad~x
)

]

(27)

where C is an arbitrary constant, and the integral in the exponent must be
taken along the line joining the points t′′, ~x′′ and t′, ~x′. Notice that in order to

10



avoid any confusion we denote the (negative) electric charge of the electron by
−e and by e the base of the natural logarithm.

The functions fp of higher order (p > 0) are determined from the following
recurrence relations:

(

t
∂

∂t′
+ ~x∇′ + z

∂

∂z′

)

fp −
ie

~c

(

Uct− ~A~x
)

fp + pfp =

=
MN fp−1

4
(

p− ν + 1
2

) .

We observe now that f0, given by (27), does not depend on z. As z enters the

latter recurrence relation only through the operation
∂

∂z′
none of the subsequent

functions will depend on z. The relation then simplifies and becomes

(

t
∂

∂t′
+ ~x∇′

)

fp −
ie

~c

(

Uct− ~A~x
)

fp + pfp =
MN fp−1

4
(

p− ν + 1
2

)

where MN represents the operator MN with the term
∂2

∂z2
omitted. One more

simplification occurs by putting

fp =
ωp

p! 22pΓ
(

p− ν + 3
2

) .

One gets this way

(

t
∂

∂t′
+ ~x∇′

)

ωp −
ie

~c

(

Uct− ~A~x
)

ωp + pωp

= pMNωp−1. (28)

The same substitution made in order to obtain f0 gives here

s
dωp

ds
− ie

~c
s
(

Ucτ − ~A~ξ
)

ωp + pωp = pMNωp−1.

Taking into account that

s
dω0

ds
− ie

~c
s
(

Ucτ − ~A~ξ
)

ω0 = 0

one readily finds the differential equation

d

ds

(

ωp

ω0

)

+
p

s

(

ωp

ω0

)

=
p

s

MNωp−1

ω0

whose integral reads:

ωp = ω0s
−p

∫ s

0

MNωp−1

ω0
d (s̄p) . (29)

11



It is easy to see now that the result depends only on t′, ~x′, t′′ and ~x′′. Hence

ω = C

∞
∑

p=0

ωp

p! 22p Γ
(

p− ν + 3
2

)

(

R2 − c2t2
)p−ν+ 1

2 . (30)

Two remarks concernig this result are here in order. First of all, it is ob-
viously valid only for functions U and ~A analytical with respect to their in-
dependent variables. Hadamard gets rid of this restriction by showing that it
is sufficient if these functions admit derivatives of high enough order to allow
the calculation of all the terms with negative exponent p − ν + 1

2 . His results
cannot be directly transferred to our problem, on one hand because of the spin
variables, implicitely involved in the function ω, and on the other hand because
Hadamard does not demonstrate his result for the singular solution itself, but
for the solution of the Cauchy problem. However, we think that the analogy
goes far enough to remove, in the case under consideration, the troublesome
analyticity condition, and we hope to come back to this issue in a forthcoming
publication.

Let us remark next that for U = 0 and ~A = 0 the series (30) is reduced at its
first term. Indeed, ω0 is just a constant, so MN becomes the operator M0N0

defined in the previous section and contains only derivative operations giving
zero when applied to a constant. Step by step one can show this way that all
ωp with p > 0 vanish. If ω0 is normalized to

ω0 = exp

[

ie

~c

∫ t′, ~x′

t′′, ~x′′

(

Ucdt− ~Ad~x
)

]

(31)

ω reduces for a zero field to the value

C

Γ
(

3
2 − ν

)

1

(R2 − c2t2)
ν− 1

2

.

In order that this expression equals I ′ (see (13)) the following condition has
to be fulfilled:

C

Γ
(

3
2 − ν

) =
1

2

1

πν

Γ
(

ν − 1
2

)

Γ
(

1
2

) ,

that is

C =
1

2

1

πν

Γ
(

ν − 1
2

)

Γ
(

3
2 − ν

)

Γ
(

1
2

) =
(−1)

ν−1

2πν− 1

2

,

and

ω =
(−1)

ν−1

2πν− 1

2

∞
∑

p=1

ωp

p! 22p Γ
(

p− ν + 3
2

)

(

R2 − c2t2
)p−ν+ 1

2 . (32)

Obviously, for c2t2 − R2 > 0, one has to put ω = 0. The matrix density
describing the vacuum in S2ν+1 is then

κ = Nω,
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and as expected it is perfectly determined by its singularities.
In order to perform the descent to the S2ν-dimensional world one has just

to put
ψ = Gϕ (33)

with G being the operator (18), and ϕ defined by

ϕ =

∫ ∞

−∞

e−iµzωdz.

Since ω depends on z only through the expression R2− c2t2 = r2+ z2− c2t2 we
have to compute the following integrals:

Cp =

∫ ∞

−∞

(

z2 + r2 − c2t2
)p−ν+ 1

2 e−iµzωdz (34)

for r2 − c2t2 > 0, and

Dp =







∫ −
√

c2t2 − r2

−∞

+

∫ ∞

√

c2t2 − r2







[

z2 −
(

c2t2 − r2
)]p−ν+ 1

2 e−iµzdz

(35)
for c2t2 − r2 > 0.

These integrals are in general divergent, but one can, through a convenient
deformation of the integration path in the complex plane of the variable z un-
ambiguously define a ‘finite part’.

Let us first examine Cp that is convergent for p < ν. The function to
be integrated has two branch points at z = ±i

√
r2 − c2t2. It becomes one-

valued if one cuts the z plane along two half-lines starting at the critical points
and ending at infinity (see Fig 1). One can without changing the value of
the integral deform the integration path such that it wraps the cut starting
at the point −i

√
r2 − c2t2, provided the branches of the integrand reduce to

their arithmetical values along the real axis. The integral taken along the new
integration path remains convergent for any finite p and defines the ‘finite part’
of Cp. One obtains then

Cp = iπ
Γ
(

1
2

)

Γ
(

ν − p− 1
2

)2p−ν+1

(

i
√
r2 − c2t2

µ

)p−ν+1

H
(1)
p−ν+1

(

iµ
√

r2 − c2t2
)

where H(1) is the first Hankel function and i has the value i = e
i
π

2 .
Let us consider now the integrals Dp which have z = ±

√
c2t2 − r2 as critical

points. They are convergent only for p = ν − 1, at least if one is limiting
oneself to integer values of p. In this case one can without changing the value
of the integrals deform the integration path into two lace contours bypassing
the critical points clockwise, continuing parallely to the negative imaginary z-
axis, and taking afterwards one half of the result (see Fig. 2). The function to
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Figure 1:

Figure 2:
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be integrated has to take values reducing to the arithmetical values along the
half-axes z > +

√
c2t2 − r2 and z < −

√
c2t2 − r2. One can prove this by first

taking as integration path the laces parallel to the real axis, doubling therefore
the value of the integral, hence the need of taking a half of the result. After
that, one turns the laces around the critical points until the suitable positions
are reached. The integrals Dp are then convergent for any p and their values
define the ‘finite parts’. Finally, one finds

Dp = −π Γ
(

1
2

)

Γ
(

ν − p− 1
2

)2p−ν+1

(√
c2t2 − r2

µ

)p−ν+1

Np−ν+1

(

µ
√

c2t2 − r2
)

where N is the Neumann function.
The theory of Bessel functions gives

Nn (u) =
2

π
Jn (u) lnu+ f (u)

with f an one-valued function, and n an integer. By putting u = iv with v

positive, and i = e
i
π

2 , one gets

Nn (iv) =
2

π
Jn (iv) ln v + f (iv) + iJn (iv) ,

hence

H(1)
n (iv) = Jn (iv) + iNn (iv)

= i

[

2

π
Jn (iv) ln v + f (iv)

]

such that

−iH(1)
n (iv) =

2

π
Jn (iv) ln |iv|+ f (iv) .

The integral Dp becomes thus identical to Cp if one agrees to replace in the

logarithmic term the root
√
c2t2 − r2 by the root

√

|c2t2 − r2|. Having accepted
this convention the expression of ϕ becomes

ϕ =
(−1)

ν−1

2πν− 1

2

∞
∑

p=0

ωp

p! 22p Γ
(

p− ν + 3
2

)

[

−π Γ
(

1
2

)

Γ
(

ν − p− 1
2

)

]

·
(

2

√
c2t2 − r2

µ

)p−ν+1

Np−ν+1

(

µ
√

c2t2 − r2
)

= − 1

2

1

(2π)
ν−1

∞
∑

p=0

(−1)
p
ωp

p! 2p

(√
c2t2 − r2

µ

)p−ν+1

·Np−ν+1

(

µ
√

c2t2 − r2
)

(36)
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for all values of c2t2 − r2.
Taking into account that the Neumann function satisfies the Bessel’s equa-

tion as well as the recurrence relations of the Neumann functions one can im-
mediately check that the expression (26) satisfies the equation:

HGϕ = 0

when the functions ωp satisfy the recurrence relations (18).
Furthermore Gϕ reduces to Σ−

2ν − Σ+
2ν when the electromagnetic field van-

ishes. It represents therefore the matrix density corresponding to vacuum in the
S2ν world. For ν = 2 one obtains the density of the unobservable distribution
in the real four-dimensional world.

We shall return, in a forthcoming publication, on the applications of the
expression (26).

Bucharest, September 1940
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425 (1935), or É. Cartan, Théorie des spineurs, Paris, 1938.

16



Contributions to the theory of positrons (II)

Şerban Ţiţeica

Abstract

The author has obtained in a previous paper the elementary solution

of Dirac’s wave equation. In the present paper, he uses this result in

order to obtain the solution of Cauchy’s problem of this equation and to

establish some four-dimensional commutation relations.

1

In a previous paper [1], we have shown that the Hadamard approach for inte-
gration of equations with partial derivatives can be applied to Dirac system of
equation, describing the motion of a magnetic electron in some electromagnetic
field. The goal of the aforementioned paper was to obtain the ’elementary solu-
tion’ (in Hadamard’s sense) for the Dirac system, which represents in positron
theory the unobservable electron density matrix. When this solution is known,
the solution of the Cauchy problem for arbitrary initial values given to the wave
function, can be obtained with the methods described by Hadamard.

The goal of this note is to transpose or, better to directly construct the solu-
tion of the Cauchy problem by using not the Hadamard’s approach, which is not
of current use in physics, but the δ-function approach of Dirac. The calculation
we shall do here will provide us the four-dimentional commutation relations for
electron wave functions similar to those obtained by Jordan and Pauli [2] in
their research on the quantization of an electromagnetic field propagating in
vacuum.

2

The quantity we are now interested in is the density

Σ− +Σ+ =
∑

ψ
(

~x′, t′
)

ψ∗
(

~x′′, t′′
)

(1)

where we keep the same notations as in [1]; since the sum is taken over all states,
irrespective of the energy sign, this density becomes for t′ = t′′ just the Dirac δ

function. Therefore this density allows us to solve the Cauchy problem, as if it

1



is multiplied by a certain function f depending on ~x′′, t′′ (and on spin variable

σ′′ not explicitly written here) and integrated over ~x′′ (and summed up over

σ′′), one obtains a function of ~x′, t′ (and σ′), which is a solution of the Dirac

equation reducing to f for t′ = t′′.
Dirac [3] calculates the sum (1) for a four-dimensional spacetime in absence

of the electromagnetic field. In order to apply the method of descent in presence
of fields, one has to calculate first this sum for a five-dimensional spacetime. In
this case, instead of formulas (11) and (12) of [1] we have the following ones:

Σ−
2ν +Σ+

2ν = iG0
1

(2π)
2ν−1

∫

ei
~k~x

sin
(

ct
√

k2 + µ2
)

√

k2 + µ2
d~k (2)

and

Σ−
2ν+1 +Σ+

2ν+1 = iN0
1

(2π)
2ν

∫

e
i
(

~k~x+ lz
)

sin
(

ct
√
k2 + l2

)

√
k2 + l2

d~kdl (3)

We shall first evaluate the integral:

I ′1 =
1

(2π)
2ν

∫

e
i
(

~k~x+ lz
)

sin
(

ct
√
k2 + l2

)

√
k2 + l2

d~kdl.

Putting K =
√
k2 + l2 and R =

√

x21 + x22 + · · ·+ x22ν−1 + z2, and taking the

integral over all the directions in the space of coordinates ~k, l one gets (see [1])

I ′1 =
1

(2π)
ν

(

− 1

R

∂

∂R

)ν−1 ∫ ∞

0

J0 (KR) sin (ctK) dK

=
1

(2π)
ν

(

− 1

R

∂

∂R

)ν−1
ε√

c2t2 −R2
(4)

with

ε =







1 for ct > 1
0 for −R < ct < R

−1 for ct < −R
(5)

The integral

I1 =
1

(2π)
2ν−1

∫

ei
~k~x

sin
(

ct
√

k2 + µ2
)

√

k2 + µ2
d~k

can be evaluated by applying to I1 the descent trick

2



I1 =

∫ +∞

−∞

I ′1e
−iµzdz

=
1

(2π)
ν

(

−1

r

∂

∂r

)ν−1

ε′
∫ +

√

c2t2 − r2

−
√

c2t2 − r2

e−iµz√
c2t2 − r2 − z2

dz

=
1

2

1

(2π)
ν−1

(

−1

r

∂

∂r

)ν−1

ε′J0

(

µ
√

c2t2 − r2
)

(6)

where J0 is the Bessel function and ε′ is +1 for ct > r, −1 for ct < −r and zero
for r > ct > −r.

For a four-dimensional universe (ν = 2), the formulas (6) take the form given
by Dirac [3].

3

Before considering the problem in the presence of a field, let us compare the
integrals I ′1 and I ′ given by the formulas (4)in the present paper and equation
(13) in [1]. The singularity is similar in both cases, with the difference that I ′1
is non-zero inside the light cone, while I ′ is non-zero only outside it.

In passing the case when fields are present we have to replace the solution
given by eq. (32) of [1] by an expression with identical singularities, but non-
zero inside the cone. A calculation similar to that done in [1] yields for this
solution the expression

ω(1) = ε
1

2πν− 1

2

∞
∑

p=0

(−1)
p
ωp

p! 22pΓ
(

p− ν + 3
2

)

(

c2t2 −R2
)p−ν+ 1

2 . (7)

The sum Σ− +Σ+ in presence of an external field becomes

κ1 = iNω(1). (8)

For performing the descent one has to calculate first the integrals

Bp =
1

2p−ν+1
√
πΓ

(

p− ν + 3
2

)

∫ +∞

−∞

ε
(

c2t2 −R2
)p−ν+ 1

2 e−iµzdz

=
ε′

2p−ν+1
√
πΓ

(

p− ν + 3
2

)

∫ +
√

c2t2 − r2

−
√

c2t2 − r2

(

c2t2 − r2 − z2
)p−ν+ 1

2 e−iµzdz.

If p ≥ ν − 1 these integrals are convergent and can be expressed in terms of
Bessel functions

Bp = ε′

(√
c2t2 − r2

µ

)p−ν+1

Jp−ν+1

(

µ
√

c2t2 − r2
)

. (9)
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They obey the recurrence relation
(

−1

r

∂

∂r

)

Bp+1 = Bp, (10)

which is obtained by taking into account the recurrence relations of Bessel func-
tions and by observing that the derivative of ε′ is a δ function on the light cone
where the Bessel function vanishes. Such a product is identically zero and one
can treat ε′ as a constant.

For p < ν − 1, we shall define [4] the integrals Bp by the formula (10)

Bν−2 =

(

−1

r

∂

∂r

)

Bν−1 =

(

−1

r

∂

∂r

)

ε′J0

(

µ
√

c2t2 − r2
)

= ε′

(√
c2t2 − r2

µ

)−1

J−1

(

µ
√

c2t2 − r2
)

+ J0

(

−1

r

∂ε′

∂r

)

. (11)

However
(

−1

r

∂

∂r

)

ε′ =
δ (ct− r)− δ (ct+ r)

r
= ∆,

where ∆ is the singular function introduced by Jordan and Pauli [2]; moreover,
the factor multiplying this singular function is different from zero on the light
cone, and so does the last term of (11). Nevertheless it is possible to replace J0
by its value on the light cone, i.e by one. So, we have

Bν−2 = ε′

(√
c2t2 − r2

µ

)−1

J−1

(

µ
√

c2t2 − r2
)

+∆. (12)

Similarly, one obtains

Bν−1−λ = ε′

(√
c2t2 − r2

µ

)−λ

J−λ

(

µ
√

c2t2 − r2
)

+

λ−1
∑

p=0

(−1)
p µ2p

p! 2p

(

−1

r

∂

∂r

)λ−1−p

∆, (13)

for λ = 2, 3, . . . , ν − 1.
With these values we are able to calculate the integral

ϕ1 =

∫ +∞

−∞

ω(1)e−iµzdz. (14)

For this purpose we replace in ω(1) in (14) by its expansion (5) and integrate
the result term by term. One gets

ϕ1 =
1

2 (2π)
ν−1

∞
∑

p=0

(−1)
p
ωp

p! 2p
Bp,

4



which becomes

ϕ1 =
1

2 (2π)
ν−1



ε′
∞
∑

p=0

(−1)
p
ωp

p! 2p

(√
c2t2 − r2

µ

)p−ν+1

Jp−ν+1

(

µ
√

c2t2 − r2
)

+

ν−2
∑

p=0

(−1)
p
ωp

p! 2p

ν−2−p
∑

q=0

(−1)
q µ2q

q! 2q

(

−1

r

∂

∂r

)ν−2−p−q

∆

]

(15)

with the expressions previously found for the integrals Bp.
The function

ψ1 = iGϕ1 (16)

with ϕ1 given by (15), is the matrix corresponding to Σ− + Σ+ when the field

is present: considered as a function of ~x′ and t′ it is a solution of the Dirac

equation; moreover for t′ = t′′ it reduces to the δ (~x) = δ
(

~x′ − ~x′′
)

-function

(multiplied by a δ function with respect to the spin variables). This is the
function staying on the right hand side of the commutation relations for the
Dirac functions taken at two arbitrary points of the spacetime

ψ
(

~x′, t′
)

ψ∗
(

~x′′, t′′
)

+ ψ∗
(

~x′′, t′′
)

ψ
(

~x′, t′
)

= ψ
(

~x′, t′; ~x′′, t′′
)

.

This is also the function to be used in order to solve the Cauchy problem for
Dirac equation.
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On the proper time in wave mechanics

Serban Titeica

The proper time τ of a material point is defined in relativistic classical (non-quantum) mechanics by
the relation:

dτ =

√

√

√

√dt2 − 1

c2

3
∑

1

dx2i (1)

where dt, dx1, dx2, dx3 are the components of a world line described by the respective point and c is
the speed of light. If the material point has an electric charge and is subjected only to the action of an
electromagnetic field given by the scalar potential V and the vector potential A1, A2, A3, the world lines
are those rendering the integral

∫

Ldt =

∫



−mc2
√

1− 1

c2

∑

(

dxi
dt

)2

+
e

c

∑

Ai

dxi
dt

− eV



 dt (2)

stationary; m is the rest mass, and e, the charge of the material point. To this problem of variational
calculus corresponds a system of canonical equations having as hamiltonian function, the function:

H = eV + c

√

m2c2 +
∑

(

pi −
e

c
Ai

)2

(3)

The definition (1) cannot be used in wave mechanics, as the concept of world line makes here no
sense. The transition from classical to wave mechanics can be done by the usual procedures only if we
can create a canonical system where the proper time is explicitly present. It is possible to choose τ as
independent variable; then, the canonical system will correspond to the following variational problem:

δ

∫

Ldτ = δ

∫

L · dt
dτ

· dτ = 0. (4)

We shall not insist on this procedure of introducing the proper time in wave mechanics, as it was
already discussed in several papers [1]. We shall only stress that one must always take into consideration
an additional condition, equivalent to the relation

(

dt

dτ

)2

− 1

c2

3
∑

1

(

dxi
dτ

)2

= 1 (5)

expressed in terms of canonical variables.
There is another approach for obtaining a canonical system containing τ , which apparently has not

been yet noticed till now, and which is much more convenient for practical applications: one maintains t
as an independent variable and one considers τ as a functions of t. Let us add to the canonical system
associated with hamiltonian function (3)

dxi
dt

=
∂H

∂pi
,
dpi
dt

= −∂H
∂xi

(6)

the eq. (1)

dτ

dt
=

√

1− 1

c2

∑

(

dxi
dt

)2

=
mc

√

m2c2 +
∑

(

pi −
e

c
Ai

)2

1



where the quantities
dxi
dt

of the second term were replaced by their values given by (6). From a formal

point of view, this equation could be written as

dτ

dt
=

∂H

∂ (mc2)
,

and completed by the conjugate equation

d
(

mc2
)

dt
= −∂H

∂τ
= 0,

as H does not depend on τ . This formal remark allows us to construct a canonical system containing the
proper time as follows: we start with the hamiltonian function

H = eV +

√

P 2 + c2
∑

(

pi −
e

c
Ai

)2

which can be obtained from (3) replacing mc2 by a new variable P canonically conjugate to a new
coordinate τ which does not enter explicitly in H, and write down the associated canonical system. This
system admits the integral P = const and reduces to the canonical system corresponding to the function
H and to eq.(1) defining the proper time, if the supplementary condition

P = mc2 (7)

is satisfied.
Let us pass now to wave mechanics. The previous recipe for passing from H to H can be immediately

transferred in quantum terms: we simply must replace in the quantum expression of H the product

mc2 by the quantum operator corresponding to P , namely
h

2πi

∂

∂τ
. Assuming, for simplicity, that the

electromagnetic field is zero, Dirac equation becomes, after this substitution

1

c

∂ψ

∂t
+−→α ▽ ψ + β

1

c

∂ψ

∂τ
= 0.

Let us notice, by the way, that it is more convenient to introduce the world line length s = cτ instead
of τ . Actually, it was this equation, completed with terms containing the electrodynamic potentials, the
one we used [2] in our research on positron theory. The method of descent used by us can be viewed in
quantum terms as a transition from the representation where τ is diagonal to that where the conjugate
variable is diagonal and has the values imposed by eq. (7).

For the applications of the substitution mc2 → h

2πi

∂

∂τ
to the wave equation of particles with spin

different from 1/2 one might refer to Hund’s paper [3].
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The vacuum polarization

Şerban Ţiţeica

Abstract

On the basis of an earlier proposal [7] concerning subtraction terms

in the hole theory the vacuum polarization in the lowest order of a fine

structure constant expansion is calculated. It turns out that the positron

theory does not lead to linear modifications of the Maxwell equations.

1

. The polarization of a dielectric is due, as we know, to the action of an external
field on the electric charges already existent in the dielectric, but they are usually
distributed in such a way, that their existence is not directly observable. Dirac’s
theory of ‘holes’ makes possible to predict that the vacuum might also allow for
a similar polarization; indeed, by a mechanism similar to that of pair creation
of particles, an electromagnetic field could modify the distribution of electrons
over the negative energy levels in such a way, that observable charges could show
up. Similar to the polarization of dielectrics, and for the same reasons, this
phenomenon has as consequence a modification of Maxwell equations. From a
theoretical point of view, the importance of this phenomenon (whose existence
has been not yet confirmed by experiment)consists in the fact that it could
provide some information about the subtractive terms in the theory of positrons;
on this subject, several studies have been already published, see [3] and [4].
The aim of this article is to calculate the charges induced in vacuum by an
electromagnetic field using the methods developed in a previous work [7]. The
first two sections provide a summary of the results of this just cited work; the
third one attempts to solve the particular problem we are interested in.

2

In wave mechanics, the right method for studying the systems composed of
an arbitrary number of particles is the superquantization. For the problem of
vacuum polarization, it suffices to limit ourselves to the Hartree approximation.
Taking into account the fact that the electrons obey the exclusion principle, the

1



properties of the system can be obtained by considering the sum

∑

oc

ψn (x
′, t)ψ∗

n (x
′′, t) (1)

where ‘oc’ means that the sum is extended over all the states n occupied by
electrons; this sum is the quantum mechanical equivalent of the distribution
function used in classical statistical mechanics. In a relativistic wave theory
of the electron, we have to take into account that the wave function has four
components ψ(x, t, k) with k = 1, 2, 3, 4, and that it is necessary to introduce
two distinct values, t′ and t′′ for the time, as if t′ and t′′ were be the same, the
equality of both values would destroy the symmetry between space and time;
we are thus lead to consider the sum

∑

oc

ψn (x
′, t′, k′)ψ∗

n (x
′′, t′′, k′′) . (2)

According to the hypothesis of holes, a distribution with all negative energy
states occupied, and all positive energy states unoccupied is unobservable; in
order to obtain the sum which corresponds to observable quantities, we have to
subtract from Eq.(2) the sum

∑

(−)

ψn (x
′, t′, k′)ψ∗

n (x
′′, t′′, k′′) ;

with the result
r =

∑

(+)oc

−
∑

(−)unoc

, (3)

and all average values of observable quantities have to be calculated using r.
Let us introduce now

Rs =
1

2

(

∑

oc

−
∑

unoc

)

,

S =
1

2





∑

(−)

−
∑

(+)



 ; (4)

so we can write:
r = Rs − S. (5)

Accordingly, the calculation of r can be done in two stages: we first calcu-
late Rs that creates, in general, only technical difficulties, as for any correctly
formulated physical problem, we know which states are occupied and which are
not. On the contrary, the calculation of the subtractive term S presents difficul-
ties of principle since in the presence of an electromagnetic field, the distinction
between the positive energy levels and the negative energy ones becomes illusory.

In order to find S, the following remark, due to Dirac, is crucial [1]: the sum

Rs has, for values of x′, t′, x′′, t′′ related by
∑

(x′i − x′′i )
2 − c2 (t′ − t′′)

2
= 0,

2



characteristic algebraic-logarithmic singularities. S must have, therefore, the
same singularities since the difference r is regular. This leads Dirac to choose
as value of S the sum of singular terms in Rs; this sum is perfectly determined
for a given electromagnetic field. Heisenberg [2] slightly modifies Dirac’s choice
by adding to the singular terms a regular one, chosen in such a way, that the
total electric charge induced by vacuum polarization be zero.

Let us notice now that the values of S given by Heisenberg do not satisfy the
Dirac’s wave equation, and so does not r. Heisenberg himself stresses that this
fact is the mathematical expression for the possibility of creating and annihi-
lating particles. However, the expression Eq.(4) shows that S has to satisfy the
Dirac equation with respect to the variables x′, t′, k′ and the adjoint equation
with respect to the variables x′′, t′′, k′′. Consequently, it seems to us that a
second condition should be imposed to S, namely to satisfy the wave equation;
notice that this does not contradict the possibility of pair creation as shown by
the usual theory of Klein paradox.

These two conditions satisfied by S do not yet completely determine this
function. From the physical point of view this is normal; as, if the situation were
opposite the function Rs satisfying the same conditions as S would be equal to
S, so r would be identically zero. From a mathematical point of view, this
means just generalizing to the Dirac equation the result obtained by Hadamard

[8] for the ‘fundamental’ solutions of hyperbolic second order equations: when
the number of independent variables is even, the fundamental solution is not
determined by its singularities.

So we have to choose among the solutions of Dirac equation having the
appropriate singularity, the one to be identified with S. In our paper already
cited, we proposed the following choice, inspired by the works of Hadamard: one
introduces in the Dirac equation an additional independent variable s, replacing

the term mc by
~

i

∂

∂s
, where ~ is the Planck constant divided by 2π; one looks for

a fundamental solution of this new equation with an odd number of independent
variables; this solution is completely determined by its singularities, as has been
demonstrated by Hadamard for second order equations; one comes then back to
the real, four-dimensional spacetime, by applying the ‘descent’ trick; the result
is by assumption equal to S.

It seems difficult to find a physical interpretation of this purely formal pro-
cedure. Until now we succeeded only in giving the physical interpretation for
the variable s and for the method of descent: s is the proper time multiplied
by the speed of light, and mc is its conjugated momentum [10]. The descent is
the transition to a representation of wave function in which the momentum is
diagonal and has exactly the value mc.

3

Let us briefly expose now the mathematical calculations, our goal being mainly
to introduce a more symmetrical and more convenient notation. For details, the

3



reader may consult our paper already cited.
The Dirac equation with an additional variable reads:

1

c

∂ψ

∂t
− ie

~c
A0 + ~α

(

∇+
ie

~c
~A

)

ψ + β
∂ψ

∂s
= 0 (6)

Multiplying from left by β and utilizing the usual notations [9], one finds

∂ψ

∂s
+ iHψ = 0 (7)

with

H =

(

γ
∂

∂x

)

+
ie

~c
(γΦ) =

4
∑

1

γρ
∂

∂xρ
+
ie

~c

4
∑

1

γρΦρ. (8)

Let us notice that the adjoint of Eq.(7) is not any more satisfied by the complex
conjugate of ψ, but by the function ψ+ = iψ∗γ4. The fundamental solution
of Eq.(7) does not correspond any more to a sum of terms having the form
ψ (x′, s′, k′)ψ∗ (x′′, s′′, k′′), but to one of the form ψ (x′, s′, k′)ψ+ (x′′, s′′, k′′);
it plays exactly the role of the previous one, and one can switch from one to
another through a simple multiplication by γ4.

We now look for a function ψ (x′, s′, k′; x′′, s′′, k′′) which, taken as a function
of x′, s′, k′ satisfies Eq.(7) and, on the light cone

D ≡ (s′ − s′′)
2
+

4
∑

1

(

x′ρ − x′′ρ
)2

= 0 (9)

tends to infinity as D− 5

2 .
Let us write

ψ = (s′ − s′′)U + V (10)

where U and V are functions of D, x′, k′, x′′, k′′. Substituting this expression
into Eq.(7) and eliminating everywhere the even powers of (s′− s′′) by using D,
one finds

U + 2
(

D −R2
) ∂U

∂D
+ 2 (s′ − s′′)

∂V

∂D

+ 2i (γx)

[

(s′ − s′′)
∂U

∂D
+
∂V

∂D

]

+ iH′ [(s′ − s′′)U + V ] = 0

where xρ = x′ρ − x′′ρ , s = s′ − s′′, R2 = x21 + · · · + x24 and the accent on H′

reminds that this operator acts on the variables x′, k′; moreover, the derivatives
with respect to coordinates x′ have to be calculated by treating D as a constant.
Separating the first order terms in s from those which do not contain this factor,
we obtain the following system of equations:

U + 2
(

D −R2
) ∂U

∂D
+ 2i (γx)

∂V

∂D
+ iH′V = 0

2
∂V

∂D
+ 2i (γx)

∂U

∂D
+ iH′U = 0. (11)

4



one can eliminate V among these equations in order to obtain an equation with
only one unknown function, U

2D
∂2U

∂D2
+

[

7 + 2

(

x
∂

∂x′

)

+ 2
ie

~c
(xΦ′)

]

∂U

∂D
+

1

2
H′2U = 0. (12)

We now write U in a form showing explicitly its singularity

U = uD− 5

2 , (13)

where u is a regular function. By substituting Eq.(13) into Eq.(12), we get

2
∂2u

∂D2
+

1

D

[

−3 + 2

(

x
∂

∂x′

)

+ 2
ie

~c
(xΦ′)

]

∂u

∂D

− 5

D2

[(

x
∂

∂x′

)

+
ie

~c
(xΦ′)

]

u+
1

2D
H′2U = 0 .

Let us look for a solution of this equation having the form

u = u0 + u1D + · · ·+ unD
n + · · · . (14)

For n = 1, 2, 3, . . . we find the recurrence relations

[(

x
∂

∂x′

)

+
ie

~c
(xΦ′) + n

]

un = − 1

2 (2n− 5)
H′2un−1 (15)

and for n = 0 the equation

[(

x
∂

∂x′

)

+
ie

~c
(xΦ′)

]

u0 = 0. (16)

This last equation and the regularity condition determine u0 up to a constant
factor which, according to the calculations done in our paper, previously cited,
has to be chosen such that for a zero field ψ reduces to the sum

1

2





∑

(−)

−
∑

(+)



 .

One finds

u0 =
3

8π2
exp

[

− ie

~c

∫ x′

x′′

Φdx

]

(17)

where the integration path is the line segment joining the spacetime points x′

and x′′.
In order to obtain V as a solution of the second Eq.(11) we write

V = vD− 5

2 = D− 5

2

∞
∑

0

vnD
n, (18)

5



and get the following relations:

v0 = −i (γx)u0
vn = −i (γx)un − i

2n− 5
H′un−1, (19)

for n = 1, 2, 3, ....
The recurrence relations Eqs.(15) and (19) are easier to handle if we put

un = u0ūn

vn = u0v̄n, (20)

in which case, they become

[

x
∂

∂x′
+ n

]

ūn = − 1

2 (2n− 5)
G′2ūn−1,

v̄n = −i (γx) ūn − i

2n− 5
G′ūn−1 (21)

where G′ is the result obtained by replacing in H′ the potentials Φ′ by Φ′− ∂λ

∂x′

with λ =

∫ x′

x′′

(Φdx).

Let us remind now that in the method of descent one multiplies both sides

of Eq.(10) by exp (−iµs), where µ =
mc

~
, and one integrates over s along a

contour conveniently chosen in the complex plane of this variable . We have
demonstrated [7] that the result can be expressed in terms of Neumann func-
tions, singular solutions of the Bessel’s equation. We shall give here only the
most important terms of the expansion of these functions, limiting ourselves to
the case x4 = 0

∫

D− 5

2 exp (−iµs) ds = −µ
4

12

[

1

2
ln
(γµr

2

)2

+

(

2

µr

)2

−
(

2

µr

)4

− 3

4

]

+ o (r)
∫

D− 3

2 exp (−iµs) ds =
µ2

2

[

1

2
ln
(γµr

2

)2

+

(

2

µr

)2

− 1

]

+ o (r)

∫

D− 1

2 exp (−iµs) ds = − ln
(γµr

2

)2

+ o (r)

∫

Dn− 1

2 exp (−iµs) ds = (−1)
n 2

µ2n
(2n− 1)! + o (r) (22)

for n = 1, 2, . . . and where r2 = x21 + x22 + x23, γ = eC, C being the Euler’s
constant C = 0.577 . . . (one should not confuse γ with the 4× 4 matrices); o (r)
designs terms vanishing as r → 0.
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4

Let us now explicitly compute the fundamental solution up to the first order in
e/~c, that is linear in the potentials Φ. We take advantage of a remark by Pauli

and Rose [5], and limit ourselves, without restricting the generality, to the case
when Φ functions are plane waves. We set

Φρ = ϕρ exp [i (p1x1 + ...+ p4x4)] = ϕρe
i (px) (23)

with ϕ = const, and obtain

λ =

∫ x′

x′′

(Φdx) = (xϕ)
sinX

X
ei (pξ) (24)

where the following notations: xρ = x′ρ−x′′ρ , ξρ =
x′ρ + x′′ρ

2
, and X =

(px

2

)

were

introduced. The recurrence relations Eq.(21) for ūn become after neglecting the
powers of e/~c higher than the first

(

x
∂

∂x′
+ n

)

ūn = − 1

2 (2n− 5)
∇′2ūn−1 for n = 2, 3, . . .

(

x
∂

∂x′
+ 1

)

ū1 =
ie

6~c
ei (pξ)

{

[

X (pϕ)− p2

2
(xϕ)

]

(

i
eiX

X
− eiX

X2

+
sinX

X3

)

+ ieiX
∑

ρ>σ

γργσ (pρϕσ − pσϕρ)

}

.

It is easy to check by using the recurrence relations for the Bessel functions
Jν (X) that the above differential equations have as solutions the expressions

ūn =
iπe

12~c

ei (pξ)

Γ
(

n− 3
2

)

(

p2

16

)n−1{[

X (pϕ)− p2

2
(xϕ)

]

Fn (X)

−2iFn−1 (X)
∑

ρ>σ

γργσ (pρϕσ − pσϕρ)

}

(25)

for n = 1, 2, . . ., and where

Fn (X) =
Jn+ 1

2

(X)
(

X

2

)n+ 1

2

Let us consider now the second relation Eq.(21) in order to calculate the
coefficients v̄n. One can immediately see that these functions contain terms
of first and third degree with respect to γ matrices. The last ones are not of
interest for our problem, because, in order to write down the matrix density of

7



the charge and current, one multiplies by γρ and one takes the trace with respect
to spin variables; or, for all third degree terms, the result of this operation is
zero. Keeping only the first order terms in γ we get

v̄0 = −i (γx)

v̄n =
πe

24~c

ei (pξ)

Γ
(

n− 3
2

)

(

p2

16

)n−2{
p2

4

[

1

2
(γp) (xϕ)X +

1

2
(γx) (pϕ)X

− 1

4
p2 (γx) (xϕ)−X2 (γϕ)

]

Fn (X)

+ (n− 1)
[

p2 (γϕ)− (γp) (pϕ)
]

Fn−1 (X)
}

(26)

with n = 1, 2, ....
One more simplification occurs if we consider the case when only the scalar

potential is non zero, and we calculate the matrix of the charge density only;
through a Lorentz transformation we can go from this particular case, to the
general one. So, we have to multiply the fundamental solution by γ4 and take
the trace with respect to spin variables. Only the terms of first order in γ4 gives
a result different of zero (and equal to 4). Moreover, let us take t′ = t′′, i.e.,
x4 = 0. We then have

Tr (γ4ūn) = 0,

T r (γ4v̄0) = 0,

T r (γ4v̄n) =
πe

24~c

ei (pξ)

Γ
(

n− 3
2

)

(

p2

16

)n−2
[

−p2ϕ4X
2Fn (X)

+ 4 (n− 1)
(

p2 − p24
)

ϕ4Fn−1 (X)
]

(27)

where X reduces now to (x1p1 + x2p2 + x3p3) /2. We pass from v̄n to vn by
multiplying it by u0. Or, as v̄n already contains the factor e/~c, we can, in
the expression Eq.(17) of u0, replace the exponential by one. The subtractive
terms of the matrix density of the charge (or, more correctly, of the fourth
component, always imaginary, of current four-vector) become, in a spacetime
with five dimensions

− e2

64π~c
ϕ4e

i (pξ)
∞
∑

1

Dn− 5

2

Γ
(

n− 3
2

)

(

p2

16

)n−2
[

−p2X2Fn (X)

+ 4 (n− 1)
(

p2 − p24
)

Fn−1 (X)
]

. (28)

By descending to the four-dimensional world we neglect the terms vanishing as
the vector ~r, of components x1, x2, x3 tends to zero. The formulas in Eq.(22)
allow us to write
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e2

4π2~c
ϕ4e

i (pξ)

[

−1

3

(~p · ~x)2
r2

+
1

3
|~p|2 ln

(γµr

2

)2

+ 2|~p|2
∞
∑

0

(−1)
n B (n+ 3, n+ 3)

n+ 1

(

p2

µ2

)n+1
]

(29)

where B is the Eulerian integral of first kind and ~p the vector with components
p1, p2, p3.

The first two terms of the expression Eq.(29) correspond exactly to subtrac-
tive terms of the Heisenberg theory, Eq.(38) in [2] corrected by Eq.(13) in [6],
while the sum Σ corresponds to the regular term of Rs, as one can find it, for
instance, from the series expansion of the expression Eq.(21) in the paper by
Pauli and Rose [5]. If one agrees with our assumption concerning the form of
subtractive terms, one has to subtract from Rs the whole expression Eq.(29).
It results that r is zero. So, if our hypothesis is correct, no linear modification
of Maxwell equations follows from the hole theory.

(Iaşi, September 1942)
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